CSCI12202 Lecture 5:
Object-Oriented Programming

TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen
(precious.osadebamwen@dal.ca)

Overview

Python built around objects

Classes as definitions of object

Accessing special methods/attributes of objects
Defining custom classes with custom methods/attributes
Object oriented programming

Object hierarchy and inheritance

Every “thing” in python is an object

>>> X

10

>>> type(x)

<class

'int'>

>>> type(5.0)

<class

'int'>

>>> type($$)

<class

‘dict'>

>>> type([])

<class

‘list'>

All of these are objects.
Each objectis an instance of a class
Each class has
A definition
An internal data representation
A set of ways it can be interacted with

In general a type defines the interface (interactions) and a class
defines the entire object.

In modern python type and class are largely equivalent terms.

Class = definition, object = instance of class

. instantiation
Class int:
Store a +/- whole number - 5 Object x :
Arithmetic functions (methods) X , Class “int"’

. add _ (x)#x+y — -5

__eq_(x)#x== x = 1int(5) methods

.__str__ () # print(x)
>>> y = 2 >>> y = 2
>>> X +y >>> x.__add__(y) >>> X == >>> X.__eq__(y)

5 5 False False

Multiple names can point to same object: aliasing

>>> x = [1,2,3]

>>> type(x)

<class 'list'>

>>> y = X

>>> 1id(x) # unique object id
136261838566464

>>> id(y)

136261838566464

Create (“instantiates”) an object defined in
the class list

Assign that to the name x

Assign y to the same object

x and y are references to the same object
at the same location in the memory

This link between x->object and y->object
is stored in a namespace

namespace’s are also objects (typically
an instance of class dict)

C

efining custom classes

Custom classes can make for simpler code

A

5)

o e

”3 +47

&

N}
g

Imaginary
@

[l

4-32-10122345
1 Real
-2i
-3i
-4i
a +ot
RealPar{\ﬂ Mf.—,

(a+bi) + (c+di) = (a+c) + (b+d)i

(a+bi)(c+di) = ac + adi + bci + bdi?

X_real_imag (3, 2) # 3 + 21

y_real_imag (1, 7) # 1 + 71

sum_real = x_real_imag[@] + y_real_imag[0] # 4

sum_imag
added = (sum_real, sum_imag) # 4 + 9i
x = Complex(3, 2) # 3 + 2i

y = Complex(1, 7) # 1 + 71

added = x +y # 4 + 91

multiplied = x * y # -11 + 231

x_real_imag[1l] + y_real_imag[l1l] # 9i

We can combine classes to make more complex objects

pl

p2

Point(1,2)

Point(6,2)

p3, p4 = Point(1,4),Point(6,4)

11

12

Line(pl, p2)

Line(p2, p4)

13, 14 = Line(p3,p4), Line(pl,p4d)

rl

Rectangle([11, 12,
13, 14])

p3 I3 p4

14 r1 12
p1 1 p2
Define class Point X

Define class Line using Point objects
Define class Rectangle using Line objects
Can define functions (e.g., r1.area() ==
I1.length() * 12.length())

11.1ength() # 5
12.1ength() # 2
rl.area() # 10

Easy to define a new class in python

class MyClass:
'""Class definitions should have a docstring
that explains what it does and how to interact
with it""’

pass # means python won’t crash but class does nothing

class CLASSNAME:
docstring
CLASS_BODY

Like functions each class
has its own internal
namespace

BUT, there are more
ways to interact with this
namespace

Even basic types like
list and dict in python
can be defined as
classes under the hood.

Everything in an object is an attribute

class MyClass:
valuel = 5 # attribute

10 # attribute

value2

def print_£foo():
technically an attribute
but we typically
ffcall class funcs: method

print(‘foo’)

>>> x = MyClass()
>>> x.valuel

5

>>> x.value2

10

>>> x.print_foo()

‘foo'

Default objects are mutable - can change attributes

class MyClass:
valuel = 5 # attribute

10 # attribute

value2

def print_foo(): #attribute/method

print(‘foo’)

You CAN modify the class definition
after defining it but it is like brain surgery
on awake person: sometimes needed but
high risk and complicated

>>> x = MyClass()

>>> x.valuel = ‘bar’

>>> x.valuel

‘bar’

>>> x.print_baz = lambda: print(‘baz’)

>>> x.print_baz()

‘baz’

>>> x = MyClass()

>>> x.valuel

5

>>> x.print_baz()

AttributeErroxr:
"print_baz'

'MyClass' object has no attribute

Instantiating objects with specific values

Init__ lets us create an object with our own values

class MyClass:

class val = ‘foo’

def __init__(self, x, y):

self.valuel
self.value2
X = MyClass('a’, 10)

x.valuel

1 7

2)
X.value2

10

X

y

Class method names that start/end with __
are called special/magic/dunder methods
Generally we don'’t run these directly but they
get automatically called when doing certain
things

__init__ automatically gets called like a
function when instantiating a class as an
object (sometimes called a “constructor”)
Attributes defined during or after __init__ are
instance/object attributes, those defined in
the class definition itself are class attributes

x.class_val

‘foo'

Be careful with mutable class variables

class Dog:

>>>

>>>

>>>

>>>

>>>

tricks = [] 4 mistaken use of a class variable

def __init__(self, name):

self.name = name

def add_trick(self, trick):

®o

d.

self.tricks.append(trick)
= Dog('Fido"')

= Dog('Buddy"')

.add_trick('roll over')

add_trick('play dead')

tricks # unexpectedly shared by all dogs

['roll over', 'play dead']

class Dog:
def __init__(self, name):
self.name = name

self.tricks = [] # creates a new empty list for
each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d, e = Dog('Fido'), Dog('Buddy"')
>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

Think about public vs private attributes

class My_Class:
def set_xy(self, x, y):
self. x = x
self. y =y
def get_sum(self):
return self. _x + self._y
obj = My_Class()
obj.set_xy(3, 5)
print('Sum ="', obj.get_sum())

print('_x =', obj._x)

Many OOP languages control whether you can
access attributes or methods only from inside an
object or externally (public vs private)

In python everything is always accessible i.e.,
“‘public”

Recommendation in python is to start attributes
with underscore, if these are intended to be
mostly used locally inside a class, i.e. be
considered “private”

PEPS8: “Use one leading underscore only for
non-public methods and instance variables®

You've already used many normal and
special class methods!

Class methods define interactions (among other things)

Type / class Objects Methods (examples)
int 0 -7 421234567 . add_ (x),._eq_ (x),._str ()
str "" 'abc' '12_a' .isdigit(), .lower(), . _len__()
list (] [1,2,3] ['a','b",'c'] .append(x), .clear(), .__mul__(x)
dict {'foo" :42, 'bar' : 5} keys(), .get(), .__getitem__ (x)
NoneType None __str_()

Example:

The function str (ob7) calls the methods
obj. str ()orobj. repr (),if
obj. str does not exist.

print calls str.

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes let us organise/package functions for an object

Type / class Objects Methods (examples)

int 0 -7 421234567 ._add_ (x),._eq_ (x),._str_ ()
str "" 'abc' '12_a' .isdigit(), .lower(), ._len__ ()

list [1[1,2,3] ['a','b', 'c'] .append(x), .clear(), . mul__ (x)
dict {'foo': 42, 'bar' : 5} .keys(), .get(), .__getitem__(x)
NoneType None ._str_()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

>>> 'aBCd'.lower()
'abcd’
>>> 'abcde'. len_ ()

5
>>> ['x', 'y'].
[IXI’ IyI, IXI,

_ mul_ (2)
'y']

>>> 3'foo' : 42%._ _getitem__('foo')

42
>>> None. str ()

'None''
>>> 'abc'. _str_ (), 'abc
(IabCI, Illabclll)

__repr__()

€q

class MyClass:

def

def

def

__init_ (self, x):

X

self.valuel

__eq__(self, y):

all == will be True
print(£“Ignoring $yt")

return True

__repr__(self):

print(£f"I am {self.valuel}”)

and _ repr__ are also common special methods

Two other most common special methods are:

e __eq__ controls how == works with
objects of this class
e __repr__ controls how print (among

other things) works with this class

>>> x = MyClass(10)
>>> x == 5
“Ignoring 5"

True

>>> print(x)

“T am 5"

Many other “standard” special methods

Function Special Method Call Returns

X ==y X.__eq__(y) Typically bool

X =y X.__ne__(y) Typically bool

< __1t__ Typically bool

> __gt__ Typically bool

<= __le__ Typically bool

>= __ge__ Typically bool
str(x) X.__str__() str

bool(x) X.__bool__() bool

int(x) X.__int__() int

lterators = object with __iter which returns an iterable
(object with __ next)

L=1['a, 'b', 'c'] e Lists are iterable (must support __iter__)

e iter returns an iterator (must support __next__)

e next(iterator_object) returns the next
next(it) # calls it.__next__() element from the iterator, by calling the
iterator_object. __next_ (). If no more elements to
report, raises exception StopIteration
next(it) e next(iterator_object, default) returns
default when no more elements are available (no
exception is raised)

next(it) e for-loops, comprehensions, map-reduce require

o iterable objects

it = iter(L) # calls L.__iter__()

a

Ibl

next(it)

StopIteration

Understanding check!

class C:
def init_ _(self, x):
self.v = x
def f(self):
self.v = self.v + 1

return self.v

>>> x = C(10)

>>> print(x.f() + x.£())

?

Understanding check!

class C: >>> x = C(10)
def init_ (self, x): >>> print(x.f() + x.£())
self.v = x {## START: self.v = 10
def f(self): ## EXPRESSION: £() + £()
self.v = self.v + 1 # run £() -> self.v = 11
return self.v # run £() -> self.v = 12

11 + 12 = 23

More advanced class tricks

Property decorator allows control of attribute changes

class C:
def dinit_ (self, in_val):
self. inside_x = in_val
@property
def x(self):
return (self._inside_x)

@x.setter

def x(self, value): # print warnings..

if type(value) == int:
self. inside_x = value
@x.deleter
def x(self):

del self. inside_x

Many languages require (or strongly encourage) having
special methods for getting or setting attribute values
Python lets you do this directly but sometimes you may
want to add extra logic to control how this is done.
Easiest way to do this is by using the @property
decorator

z = C(5)

Z.X i getter

z.X = 10 # setter
del z.x # deleter

Dataclasses are a convenient way to make data objects

from dataclasses import dataclass

@dataclass

class Student:
name: str
major: str

GPA: float

dataclass automates adding useful code
for objects designed to store data
This includes
o Setting attribute values with specific types
o Creating default values
o Comparing data objects _eq_
o Printing out data objects __repr__
Can be made immutable

@dataclass(frozen=True)

PEPS8 Style Guide for Classes

e Class names should normally use the CapWords convention.

e Always use self for the first argument to instance methods.

e Use one leading underscore only for non-public methods and instance
variables.

e For simple public data attributes, it is best to expose just the attribute name,
without complicated accessor/mutator methods (or use @property)

e Always decide whether a class's methods and instance variables (collectively:
"attributes") should be public or non-public. If in doubt, choose non-public; it's
easier to make it public later than to make a public attribute non-public

Why do we bother with custom classes?

Building your program around classes

Solving problems:

e Top-down design- break big problem into smaller problems and write functions:

©)
©)

functional programming where the focus is on functions, lambda’s and higher order functions.
imperative programming focusing on sequences of statements changing the state of the program

e OR Describe the organization of your data and have that reflected in your program:

0O O O O O O

A contact management program will manipulate Contacts

A drawing program will manipulate a Canvas, and perhaps Lines, Colors,

and Shapes

Social Media will manipulate Users, Posts, and Advertisements

These are the “nouns” of these programs

We can then define how we interact with these nouns using verbs (aka methods/operators)

Obiject Oriented Programming (OOP)

e OOP is just another programming paradigm
e No single paradigm is the “BEST” each have their roles (lots of modern languages
let you mix and match)

e Core concepts are objects, methods and classes,
o allowing one to construct abstract data types, i.e. user defined types
o objects have states (i.e., attributes)
o methods manipulate objects, defining the interface of the object to the rest of the program’

e OO supported by many programming languages, including Python
e % most used languages support OOP (Java, C++, Python, C#)

Why is OOP useful?

e OOPs lets us bundle together objects that share:
o common attributes
o procedures that operate on those attributes

e Use abstraction to make a distinction between how to Implement an object vs
how to use the object

e Create our own classes of objects on top of Python’s basic classes

e Build layers of object abstractions that inherit behaviors/code from other
classes of objects

e Easier(?) for lots of developers to work on together

Influential OOP “Design patterns” common in many
programs

100V >

D i \
esign Patterns @ pyogion Pattern Patterns | Db PR

Elements of Reusable

Object-Oriented Software z A Brain-Friendly Guide] \P| \l N l D RELIABLE
Erich Gamima = vod thcen TN o vy vyt lava SOFTWARE
o) embarrassing Factory pattern is In sing Pattern.
Richard He]m E coupling mistakes &)l n:b::!‘b'
Ralph Johnson Z " . . % Volume1 || Secowromes
John Vissides Z 2 .' ’ Second Edition g) ;
s g A Catalog Cotatiny iy B / /o]
4 . s s || of Reusable PERIRER
pe. of the Patteens Guru)\ e Design Patterns 5% Z
Z : Illustrated
O with UML
P ¢ { L i ristensen
[& R 3 : oA e leih
—— L g et mprod | | Mark Grand RL2:42 =
uuuzc«mmn-« ' whes he cut down =
Forew ord by Grady Booch thelp slock price wilh g | his nbeettance _

Java cookbook 2003 Java textbook 2004 Java textbook 2010

) o

-

The Classic book 1994 A very alternative book 2004
(C++ cookbook) (Java, very visual)

abeth Robson

Gang of Four https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Let’s dig into OOP a bit more

Student Grades

class Assignment:

stul
labl
lab2

stul.
stul.
stul.

def

ad
ad
av

__init__(self, grade):
if not type(grade) in [int, float]:
raise ValueError(“Not number”)
if not (0 <= grade <= 100):
raise ValueError(“Should be 0-100")

self.grade = grade

Student(“Test Student”)
Assignment (94)
Assignment (50)
d_grade(labl)
d_grade(lab2)
erage_grade()

“Test Student got 72.0"

class Student:

def init_ (self, name):
self.name = name
self.grades = []

def add_grade(self, grade):
if not type(grade) == Assignment:

raise ValueError

self.grades.append(grade)

def average_grade(self):
vals = [x.grade for x in self.grades]
mean = sum(vals) / len(vals)
print(f”{self.name} got {meani”)

return mean

Inheritance is a key concept in OOP

Classes often have overlapping definitions

Observation: students and employees

are persons with additional attributes

set name (name)
get name ()

instance EersonfabjccE
— | name = 'Mickey Mouse'

set address (address) address = 'Mouse Street 42, Duckburg'
get address ()

class Student

Student object

- ——————

name = 'Donald Duck'
SC I BENIE SR instance address = 'Duck Steet 13, Duckburg'
get name () ! | id = '1094"
set _address (address) grades = {'programming' : 'A' }

get address ()

Employee object

set id(student id)

o P U ————

-

get id() name = 'Goofy'
set grade (course, grade) address = 'Clumsy Road 7, Duckburg'
get:grades() employer = 'Yarvard University'

\ ’

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Overlapping definitions = duplicated brittle code

class Person

set name (name)
get name ()

Set address({address)
get¥addressi()

class Student

-,

iget name ()

1
1
1
:set_address(address) i
iget address () ;

set id(student id)
get id()

set grade (course, grade)
get grades ()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Goal — avoid redefining the 4 methods below
from person class again in student class

class Person:
def set_name(self, name):
self.name = name
def get_name (self):
return self.name

def set_address(self, address):
self.address = address

def get_address (self):
return self.address

Inheritance means we can define shared attributes once

class Person

T — class Studen"c inherits from class Person
get name () class Person is the base class of Student

set address (address)
get address ()

class Student class Student (Person) :

(Set name (name) person) def set_id(self, student_id):
l —

lget _name () Gl self.id = student_id
1

def get_id(self):

1
Iset_address (address) retarn self.id

----- S mmmmmm e def set_grade(self, course, grade):
set_id(student_id) self.grades[course] = grade
get_1d() def get grades (self):

set grade (course, grade) return self.grades

get grades()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Inheritance means we can define shared attributes once

set name (name) class Person:

get name () def init (self): \| Ty oy

set address (address) Se = mane = Moms f Person class
= self.address = None

get address()

class Student (Person):

(set_name (name) person | def _init (self):

lget name () attributes | self.id = None constructor for
i self.grades = {} Student class

Person. init (self)
iget address () - -

1

1

]

iset address (address) i
S 1

]

U

setitdi(studenElic) Notes

get_id() 1) ifStudent. init _isnot defined, then
Person. init will be called

2) Student. init mustcall Person. init to
initialize the name and address attributes

set grade (course, grade)
get grades ()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

super lets us access the parent/base class

class Person

set name (name)
get-iname ()

setiaddressi(address)
get address()

class Student

|

person
attributes 1

lget name ()

1
iset_address(address)
lget address ()

N e e -

setid(stuident N ic)
get1di()

set grade(course,;grade)
get grades()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

class Person:
def init (self):
self.name = None
self.address = None

class Student (Person) :

def init (self):

self.id = None
self.grades = {}

Person.—init—(self)

super().__iniE:_()

Notes

T alternative
constructor

1) Function super () searches for attributes in base class
2) super is often a keyword in other OO languages, like Java and C++
3) Notesuper (). init () doesnotneed self asargument

Classes often exist in these types of hierarchies

class Person

set name (name)
get name ()

set address(address)
get address ()

Tparent class

class Student (Person)

getad ()

set grade (course, grade)
get grades ()

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

—

Student object

name = 'Donald Duck'

address = 'Duck Steet 13, Duckburg'
id = '1094"

grades = {'programming' : 'A' }

Classes in a hierarchy can be composed using inheritance

e Parent class (superclass)
e Child class (subclass)

parent class

add more info

add more behavior
override behavior

Person Cat Rabbit

<

Student

O O O O O

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

inherits all data Person and behaviors of

class object

t

class Person

set name (name)
get name ()

set address (address)

get address ()

class Student (Person) class Employee (Person)
set id(student id) set employer (employer)
e Eicli() get employer ()

set grade (course, grade)

get grades ()

Classes can override inherited attributes

overloading.py

class A:
def say(self):
print('A says hello')

class B(A): # B is a subclass of A
def say(self):
print ('B says hello')
super () .say()

Python shell

> B() .say()
| B says hello
| A says hello

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes can override inherited attributes

class PolitelList(list): >>> x = Politelist()

"Thanks for creating me!"
def __init__(self, iterable):

>>> x[0] = ‘A’
print("Thanks for creating me!")

“T will now set the Oth value

super().__init__(str(item) for item in iterable) with *‘A’"
def __repr__(self): >>> x[0]
return "Polite list = " + super().__repr__(self) “You want the Oth value? Here!”
def __setitem__(self, index, value): 0/\0
print(f"I will now set the {index}th value with fvaluet}”) >>> print(x)
super().__setitem__(self, index, value) “Ppolite list = [‘A’"]"

def __getitem__(self, index):
print(£"You want {index}th value? Here!")

return supexr().__getitem__(self, index)

Summary

Everything in python is an object

Classes are instantiated as objects

Special methods can be used to control how operators work

Defining custom classes with custom methods/attributes can be powerful
Object oriented programming abstracts data and operations in a way that
enables complex program functions

e Object hierarchy and inheritance allows us to create flexible class definitions
with minimal redundancy

Glossary

class -- The definition used to construct objects. Think of it like a blueprint. This is class Person in our code.

object -- Each time you use a class it creates an object. This the becky variable.

instance -- Another name for an object, as in "this is an instance of a Person."

instantiate -- Away to say "create an object" or "create an instance".

attribute -- Any data that is part of the objects as defined by the class you used to create it. This is self.name or
self.age in our code.

method -- It's just a function that's been attached to a class. Don't get confused when people claim a method is radically
different from a function. Technically just a type of attribute

special/magic/dunder methods -- methods that are usually not called directly but define operations

inheritance -- This is a complicated topic but you can have a class that gets additional features from another class. It's
similar to how you inherited certain features from your parents.

members -- The members of a class are just the attributes and methods defined in the class.

polymorphism -- A protocol for what happens when classes of different inheritance are used. This is a complex topic, and for
you it is likely more trouble than it's worth!

