
CSCI2202 Lecture 5:
Object-Oriented Programming

TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen
(precious.osadebamwen@dal.ca)

Overview

● Python built around objects
● Classes as definitions of object
● Accessing special methods/attributes of objects
● Defining custom classes with custom methods/attributes
● Object oriented programming
● Object hierarchy and inheritance

Every “thing” in python is an object

>>> x = 10

>>> type(x)

<class 'int'>

>>> type(5.0)

<class 'int'>

>>> type({})

<class 'dict'>

>>> type([])

<class 'list'>

All of these are objects.

Each object is an instance of a class

Each class has

A definition

An internal data representation

A set of ways it can be interacted with

In general a type defines the interface (interactions) and a class
defines the entire object.

In modern python type and class are largely equivalent terms.

Class = definition, object = instance of class

Class int:
Store a +/- whole number

Arithmetic functions (methods)
.__add__(x) # x + y
.__eq__(x) # x == y
.__str__() # print(x)

Object x:
Class `int`

-5
methods

x = 5

x = int(5)

>>> y = 2
>>> x + y
5

>>> x.__add__(y)
5

>>> y = 2
>>> x == y
False

>>> x.__eq__(y)
False

instantiation

Multiple names can point to same object: aliasing

● Create (“instantiates”) an object defined in
the class list

● Assign that to the name x
● Assign y to the same object
● x and y are references to the same object

at the same location in the memory
● This link between x->object and y->object

is stored in a namespace
● namespace’s are also objects (typically

an instance of class dict)

>>> x = [1,2,3]

>>> type(x)

<class 'list'>

>>> y = x

>>> id(x) # unique object id

136261838566464

>>> id(y)

136261838566464

Defining custom classes

Custom classes can make for simpler code

x_real_imag = (3, 2) # 3 + 2i

y_real_imag = (1, 7) # 1 + 7i

sum_real = x_real_imag[0] + y_real_imag[0] # 4

sum_imag = x_real_imag[1] + y_real_imag[1] # 9i

added = (sum_real, sum_imag) # 4 + 9i

x = Complex(3, 2) # 3 + 2i

y = Complex(1, 7) # 1 + 7i

added = x + y # 4 + 9i

multiplied = x * y # −11 + 23i

(a+bi) + (c+di) = (a+c) + (b+d)i

(a+bi)(c+di) = ac + adi + bci + bdi2

We can combine classes to make more complex objects

p1 = Point(1,2)

p2 = Point(6,2)

p3, p4 = Point(1,4),Point(6,4)

l1 = Line(p1, p2)

l2 = Line(p2, p4)

l3, l4 = Line(p3,p4), Line(p1,p4)

r1 = Rectangle([l1, l2,

 l3, l4])

p1 p2

r1

l1

l4

l3

l2

y

x

p4p3

Define class Point
Define class Line using Point objects
Define class Rectangle using Line objects
Can define functions (e.g., r1.area() ==
l1.length() * l2.length())

l1.length() # 5
l2.length() # 2
r1.area() # 10

Easy to define a new class in python

class MyClass:

‘’’Class definitions should have a docstring

that explains what it does and how to interact

with it’’’

pass # means python won’t crash but class does nothing

class CLASSNAME:
docstring
CLASS_BODY

● Like functions each class
has its own internal
namespace

● BUT, there are more
ways to interact with this
namespace

● Even basic types like
list and dict in python
can be defined as
classes under the hood.

Everything in an object is an attribute

class MyClass:

value1 = 5 # attribute

value2 = 10 # attribute

def print_foo():

technically an attribute

but we typically

#call class funcs: method

print(‘foo’)

>>> x = MyClass()

>>> x.value1

5

>>> x.value2

10

>>> x.print_foo()

‘foo’

Default objects are mutable - can change attributes

class MyClass:

value1 = 5 # attribute

value2 = 10 # attribute

def print_foo(): #attribute/method

print(‘foo’)

>>> x = MyClass()

>>> x.value1 = ‘bar’

>>> x.value1

‘bar’

>>> x.print_baz = lambda: print(‘baz’)

>>> x.print_baz()

‘baz’

>>> x = MyClass()

>>> x.value1

5

>>> x.print_baz()

AttributeError: 'MyClass' object has no attribute
'print_baz'

You CAN modify the class definition
after defining it but it is like brain surgery
on awake person: sometimes needed but
high risk and complicated

Instantiating objects with specific values

__init__ lets us create an object with our own values

class MyClass:

class_val = ‘foo’

def __init__(self, x, y):

self.value1 = x

self.value2 = y

x = MyClass(‘a’, 10)

x.value1

‘a’

x.value2

10

● Class method names that start/end with __
are called special/magic/dunder methods

● Generally we don’t run these directly but they
get automatically called when doing certain
things

● __init__ automatically gets called like a
function when instantiating a class as an
object (sometimes called a “constructor”)

● Attributes defined during or after __init__ are
instance/object attributes, those defined in
the class definition itself are class attributes

x.class_val

‘foo’

Be careful with mutable class variables
class Dog:

 tricks = [] # mistaken use of a class variable

 def __init__(self, name):

 self.name = name

 def add_trick(self, trick):

 self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks # unexpectedly shared by all dogs

['roll over', 'play dead']

class Dog:

 def __init__(self, name):

 self.name = name

 self.tricks = [] # creates a new empty list for
each dog

 def add_trick(self, trick):

 self.tricks.append(trick)

>>> d, e = Dog('Fido'), Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

Think about public vs private attributes

class My_Class:

def set_xy(self, x, y):

self._x = x

self._y = y

def get_sum(self):

return self._x + self._y

obj = My_Class()

obj.set_xy(3, 5)

print('Sum =', obj.get_sum())

print('_x =', obj._x)

● Many OOP languages control whether you can
access attributes or methods only from inside an
object or externally (public vs private)

● In python everything is always accessible i.e.,
“public”

● Recommendation in python is to start attributes
with underscore, if these are intended to be
mostly used locally inside a class, i.e. be
considered ”private”

● PEP8: “Use one leading underscore only for
non-public methods and instance variables“

You’ve already used many normal and
special class methods!

Class methods define interactions (among other things)

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes let us organise/package functions for an object

>>> 'aBCd'.lower()
'abcd'
>>> 'abcde'.__len__()
.__len__() called by len(...)
5
>>> ['x', 'y'].__mul__(2)
['x', 'y', 'x', 'y']
eq. to [‘x’, ‘y’] * 2
>>> {'foo' : 42}.__getitem__('foo')
eq. to {'foo' : 42}['foo']
42
>>> None.__str__()
used by str(...)
'None'
>>> 'abc'.__str__(), 'abc'.__repr__()
('abc', "'abc'")

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

__eq__ and __repr__ are also common special methods

class MyClass:

def __init__(self, x):

self.value1 = x

def __eq__(self, y):

all == will be True

print(f“Ignoring {y}”)

return True

def __repr__(self):

print(f”I am {self.value1}”)

Two other most common special methods are:

● __eq__ controls how == works with
objects of this class

● __repr__ controls how print (among
other things) works with this class

>>> x = MyClass(10)
>>> x == 5
“Ignoring 5”
True
>>> print(x)
“I am 5”

Many other “standard” special methods

Function Special Method Call Returns

x == y x.__eq__(y) Typically bool

x != y x.__ne__(y) Typically bool

< __lt__ Typically bool

> __gt__ Typically bool

<= __le__ Typically bool

>= __ge__ Typically bool

str(x) x.__str__() str

bool(x) x.__bool__() bool

int(x) x.__int__() int

Iterators = object with __iter__ which returns an iterable
(object with __next__)
L = ['a', 'b', 'c']

it = iter(L) # calls L.__iter__()

next(it) # calls it.__next__()

 'a'

next(it)

 'b'

next(it)

 'c'

next(it)

 StopIteration

● Lists are iterable (must support __iter__)
● iter returns an iterator (must support __next__)
● next(iterator_object) returns the next

element from the iterator, by calling the
iterator_object.__next__(). If no more elements to
report, raises exception StopIteration

● next(iterator_object, default) returns
default when no more elements are available (no
exception is raised)

● for-loops, comprehensions, map-reduce require
iterable objects

Understanding check!

class C:

def __init__(self, x):

self.v = x

def f(self):

self.v = self.v + 1

return self.v

>>> x = C(10)

>>> print(x.f() + x.f())

?

Understanding check!

class C:

def __init__(self, x):

self.v = x

def f(self):

self.v = self.v + 1

return self.v

>>> x = C(10)

>>> print(x.f() + x.f())

START: self.v = 10

EXPRESSION: f() + f()

run f() -> self.v = 11

run f() -> self.v = 12

11 + 12 = 23

More advanced class tricks

Property decorator allows control of attribute changes

● Many languages require (or strongly encourage) having
special methods for getting or setting attribute values

● Python lets you do this directly but sometimes you may
want to add extra logic to control how this is done.

● Easiest way to do this is by using the @property
decorator

class C:

 def __init__(self, in_val):

 self._inside_x = in_val

 @property

 def x(self):

 return (self._inside_x)

 @x.setter

 def x(self, value): # print warnings…

 if type(value) == int:

 self._inside_x = value

 @x.deleter

 def x(self):

 del self._inside_x

z = C(5)
z.x # getter
z.x = 10 # setter
del z.x # deleter

Dataclasses are a convenient way to make data objects

from dataclasses import dataclass

@dataclass

class Student:

 name: str

 major: str

 GPA: float = 0.0

● dataclass automates adding useful code
for objects designed to store data

● This includes
○ Setting attribute values with specific types
○ Creating default values
○ Comparing data objects __eq__
○ Printing out data objects __repr__

● Can be made immutable
@dataclass(frozen=True)

PEP8 Style Guide for Classes

● Class names should normally use the CapWords convention.
● Always use self for the first argument to instance methods.
● Use one leading underscore only for non-public methods and instance

variables.
● For simple public data attributes, it is best to expose just the attribute name,

without complicated accessor/mutator methods (or use @property)
● Always decide whether a class's methods and instance variables (collectively:

"attributes") should be public or non-public. If in doubt, choose non-public; it's
easier to make it public later than to make a public attribute non-public

Why do we bother with custom classes?

Building your program around classes

Solving problems:

● Top-down design- break big problem into smaller problems and write functions:
○ functional programming where the focus is on functions, lambda’s and higher order functions.
○ imperative programming focusing on sequences of statements changing the state of the program

● OR Describe the organization of your data and have that reflected in your program:
○ A contact management program will manipulate Contacts
○ A drawing program will manipulate a Canvas, and perhaps Lines, Colors,
○ and Shapes
○ Social Media will manipulate Users, Posts, and Advertisements
○ These are the “nouns” of these programs
○ We can then define how we interact with these nouns using verbs (aka methods/operators)

Object Oriented Programming (OOP)

● OOP is just another programming paradigm
● No single paradigm is the “BEST” each have their roles (lots of modern languages

let you mix and match)

● Core concepts are objects, methods and classes,
○ allowing one to construct abstract data types, i.e. user defined types
○ objects have states (i.e., attributes)
○ methods manipulate objects, defining the interface of the object to the rest of the program’

● OO supported by many programming languages, including Python
● ⅘ most used languages support OOP (Java, C++, Python, C#)

Why is OOP useful?

● OOPs lets us bundle together objects that share:
○ common attributes
○ procedures that operate on those attributes

● Use abstraction to make a distinction between how to Implement an object vs
how to use the object

● Create our own classes of objects on top of Python’s basic classes
● Build layers of object abstractions that inherit behaviors/code from other

classes of objects
● Easier(?) for lots of developers to work on together

Influential OOP “Design patterns” common in many
programs

https://gsbrodal.github.io/ipsa/slides/all-slides.pdfGang of Four

Let’s dig into OOP a bit more

class Assignment:

def __init__(self, grade):

if not type(grade) in [int, float]:

raise ValueError(“Not number”)

if not (0 <= grade <= 100):

raise ValueError(“Should be 0-100”)

self.grade = grade

Student Grades

stu1 = Student(“Test Student”)
lab1 = Assignment(94)
lab2 = Assignment(50)
stu1.add_grade(lab1)
stu1.add_grade(lab2)
stu1.average_grade()
“Test Student got 72.0”

class Student:

def __init__(self, name):

self.name = name

self.grades = []

def add_grade(self, grade):

if not type(grade) == Assignment:

raise ValueError

self.grades.append(grade)

def average_grade(self):

vals = [x.grade for x in self.grades]

mean = sum(vals) / len(vals)

print(f”{self.name} got {mean}”)

return mean

Inheritance is a key concept in OOP

Classes often have overlapping definitions

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Overlapping definitions = duplicated brittle code

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Inheritance means we can define shared attributes once

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Inheritance means we can define shared attributes once

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

super lets us access the parent/base class

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes often exist in these types of hierarchies

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes in a hierarchy can be composed using inheritance

● Parent class (superclass)
● Child class (subclass)

○ inherits all data Person and behaviors of
○ parent class
○ add more info
○ add more behavior
○ override behavior

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes can override inherited attributes

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Classes can override inherited attributes
class PoliteList(list):

def __init__(self, iterable):

print("Thanks for creating me!")

super().__init__(str(item) for item in iterable)

def __repr__(self):

return "Polite list = " + super().__repr__(self)

def __setitem__(self, index, value):

print(f”I will now set the {index}th value with {value}”)

super().__setitem__(self, index, value)

def __getitem__(self, index):

print(f"You want {index}th value? Here!")

return super().__getitem__(self, index)

>>> x = PoliteList()
"Thanks for creating me!"

>>> x[0] = ‘A’

“I will now set the 0th value
with ‘A’”

>>> x[0]

“You want the 0th value? Here!”

‘A’

>>> print(x)

“Polite list = [‘A’]”

Summary

● Everything in python is an object
● Classes are instantiated as objects
● Special methods can be used to control how operators work
● Defining custom classes with custom methods/attributes can be powerful
● Object oriented programming abstracts data and operations in a way that

enables complex program functions
● Object hierarchy and inheritance allows us to create flexible class definitions

with minimal redundancy

Glossary

● class -- The definition used to construct objects. Think of it like a blueprint. This is class Person in our code.
● object -- Each time you use a class it creates an object. This the becky variable.
● instance -- Another name for an object, as in "this is an instance of a Person."
● instantiate -- A way to say "create an object" or "create an instance".
● attribute -- Any data that is part of the objects as defined by the class you used to create it. This is self.name or

self.age in our code.
● method -- It's just a function that's been attached to a class. Don't get confused when people claim a method is radically

different from a function. Technically just a type of attribute
● special/magic/dunder methods -- methods that are usually not called directly but define operations
● inheritance -- This is a complicated topic but you can have a class that gets additional features from another class. It's

similar to how you inherited certain features from your parents.
● members -- The members of a class are just the attributes and methods defined in the class.
● polymorphism -- A protocol for what happens when classes of different inheritance are used. This is a complex topic, and for

you it is likely more trouble than it's worth!

